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Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, 41100 Modena, Italy

Received 8 May 2002 / Received in final form 4 July 2002
Published online 24 September 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. Here we consider the dynamics of a two-level system under an external time-dependent field.
We show that in the case of a bichromatic field the dynamical localization effect is strongly sensitive with
respect to the commensurability of the driving frequencies.

PACS. 03.65.-w Quantum mechanics – 73.40.Gk Tunneling

Driven two-level systems have been the subject of great
interest since the pioneering works by Rabi who solved the
problem of a two-level spin system in a circularly polarized
magnetic field [1]. At present, they appear in many fields,
from theoretical physics to practical optics (see [2–10] and
references therein). Furthermore, the concept of driven
two-level system is the corner-stone of quantum comput-
ing [11,12].

One of the main address concerns dynamical localiza-
tion. In a seminal paper Grossmann and co-workers [13]
pointed out that the beating motion in a two-level sys-
tem can be controlled, and even suppressed, by means of
a tailored external monochromatic driving field. Applica-
tions resulting from this discovery are, among others, the
confinement of electrons in quantum structures [14], the
control of molecular reactions [15,16] and the control of
electron transfer [17].

Recently, the trapping mechanism by means of two
laser fields has been explored and, on the basis of numeri-
cal investigations, a chaotic dependence from the external
field’s parameters is suggested [18,19]. In this paper, we
give the theoretical explanation of this chaotic behavior
and we show that the influence, on the dynamical local-
ization effect, of a change of the field’s frequencies cannot
be reduced beyond a certain limit.

A generic equation describing the dynamics of a two-
level driven system can be written as

iφ̇ = H1φ, H1 = εσ1 + f(t)σ3, φ(0) = φ0, (1)

where ε > 0 is the beating frequency, φ̇ denotes the deriva-
tive of φ with respect to the time t,

φ(t) =
(
φ1(t)
φ2(t)

)
,
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f(t) is the driving force that depends on time and σ1,3 are
the two Pauli’s matrices:

σ1 =
(

0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
·

The actual semiclassical parameter is the beating fre-
quency ε.

For our purposes [20] will be useful to write the original
equation (1) in a different form by means of the transfor-
mation

ψ = eiασ3φ

where

α(t) =
∫ t

0

f(ξ)dξ. (2)

Then equation (1) takes the form

iψ̇ = H2ψ, H2 = εeiασ3σ1e−iασ3 , (3)

with the same initial condition ψ(0) = φ0.
When the driving field is absent, that is f(t) ≡ 0, then

equation (3) has a periodic solution and the imbalance
function, defined as

z(t) = |ψ1(t)|2 − |ψ2(t)|2 ≡ |φ1(t)|2 − |φ2(t)|2, (4)

is a periodic function, which assumes both positive and
negative values. The beating period is T = π/ε.

It has been found that for a monochromatic driving
force the wavefunction φ is, for certain values of the field’s
parameters, nearly “frozen” in its initial configuration [13].
Indeed, let

f(t) =
1
2
η sin(ωt) (5)
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where η and ω are, respectively, the amplitude and the
frequency of the external monochromatic field. By means
of the average theorem [21], in the limit of small beating
frequency, that is ε � ω, we can approximate the solu-
tion of equation (3) by the solution of the average system
given by

iψ̇ = Ĥ2ψ, Ĥ2 = εJ0(η/ω)σ1 (6)

where J0(x) is the zeroth Bessel function. Hence, the un-
perturbed imbalance function z(t) is approximated by
means of the imbalance function ẑ related to the aver-
age equation (6) for any time of the order 1/ε. That is,
for any δ > 0 there exists ε0 > 0 such that for any ε,
0 < ε < ε0, then

|z(t) − ẑ(t)| < δ, ∀t ∈ [0, T ], T =
π

ε
·

From this fact and since (6) has the same form of equa-
tion (1) with f(t) ≡ 0 and ε replaced by εJ0(η/ω) then
it follows that z(t) is, up to a small correction, a periodic
function, with beating period now given by π/εJ0(η/ω),
that assumes both positive and negative values.

In particular, when the external field’s parameters η
and ω are such that J0(η/ω) = 0 then the beating motion
disappears and we have dynamical localization. By means
of a continuity argument we have that the dynamical lo-
calization effect is still observed for any value of the field’s
parameters such that η/ω is close enough to a zero of the
zero-th Bessel function J0(x). That is we have that:

Proposition 1. When the parameters of the driving
field (5) are such that η/ω ≈ x0, where J0(x0) = 0, then
we have dynamical localization.

This result could suggest us to plan an experiment
where we can “freeze” a two-level system, at least for any
time of the order of the beating period T , by means of an
external monochromatic driving field for suitable values
of the amplitude and of the frequency. In fact, a small
change of these parameters does not actually affect the
result of the experiment because it is not necessary that
the ratio η/ω is exactly equal to x0, but we only need that
this ratio is close enough to x0.

This favorable situation does not hold in the cases of
external monochromatic driving fields, with modulation
of the amplitude, or bichromatic driving fields. In fact, in
such a case we’ll show that any change, small at will, of
the field’s frequencies actually affects in a chaotic way the
behavior of the solution of equation (3).

Let us consider, for the sake of argument, the
monochromatic field with modulation of the amplitude
given by

f(t) = η sin(Ωt) sin(ωt), ε� Ω < ω.

From standard trigonometric formulas it follows that this
case is equivalent to the case of an external bichromatic
field with same amplitude η and different frequencies ω1 =
ω −Ω and ω2 = ω +Ω:

f(t) =
1
2
η [cos(ω1t) − cos(ω2t)] . (7)

Now, let us recall the following theoretical result [20]. Let
α(t) be defined as in (2) and let

I(t) =
1
t

∫ t

0

e2iα(ξ)dξ.

If the limit

Î = lim
t→∞ I(t)

exists and it is zero then we have dynamical localization;
that is the solution ψ of equation (3) is “frozen” in to its
initial value and z(t) ∼ z(0) for any t ∈ [0, T ]. In order
to apply this result we compute, by means of the Bessel
functions, the explicit expression of the limit Î when f(t)
is given by (7). We have that [20]

Î = J0(η/ω1)J0(η/ω2) + r, (8)

where the remainder term r is given by

r =

{
0 if ω2

ω1
∈ R−Q∑+∞

�=−∞,� �=0 Jn�(η/ω1)Jm�(η/ω2) if ω2
ω1

= n
m ∈ Q

where n and m are two integer numbers which have no
common divisor. In particular, r is exactly zero when the
two frequencies ω1 and ω2 are incommensurate.

Let us assume, for a moment, that the frequency ω
of the field is exactly three times the frequency Ω of the
amplitude modulation, that is ω2 = 2ω1, n = 2 andm = 1.
Then (8) takes the form

Î =
+∞∑

�=−∞
J2�(µ)J�(µ/2), µ =

η

ω1
,

and equation Î = 0 has a solution for µ = µ0, where
µ0 = 3.593 . . . Hence, we can state that:

Proposition 2. When the parameters of the driving
field (7) are such η/ω1 ≈ µ0 and ω2 is exactly the twice of
ω1 then we have dynamical localization.

Despite the appearance, we have that Proposition 2 is
much more weak than Proposition 1. In fact, the conti-
nuity argument, applied to Proposition 1, does not fully
apply in this second case. In order to show this fact let
η/ω1 = µ0 and let ω2 be almost, but not exactly, the
twice of ω1, for instance ω2 = 2.01ω1. In such a case we
have that

ω2

ω1
=

201
100

∈ Q, n = 201, m = 100

and (this result is exact if ω1 and ω2 are incommensurate),

Î =
+∞∑

�=−∞
J201�(η/ω1)J100�(η/2.01ω1)

≈ J0(µ0)J0(µ0/2.01) = −0.135749 �= 0
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Fig. 1. In this figure we plot the graphs of the imbalance
function z(t) = |ψ1(t)|2 − |ψ2(t)|2. Broken line represents the
case of ω2 exactly equal to the twice of ω1 and η/ω1 = µ0 ≈
3.593 . . . , in such a case we have dynamical localization. If ω2

is almost, but not exactly, equal to the twice of ω1, e.g. ω2 =
2.01ω1, then, for the same value of the ratio η/ω1 = µ0, we
don’t have dynamical localization (bold line). T is the beating
period.

since |Jn(z)| ≤ |z/2|n/n! [22]. Therefore, we don’t have
now the dynamical localization effect since Î �= 0. As a
result we can conclude that Proposition 2 does not hold
when ω2 is not exactly the twice of ω1.

The numerical evidence of this fact could be seen by
introducing the imbalance function z(t), defined in (4),
and the relative phase

θ(t) = arg[ψ1(t)] − arg[ψ2(t)].

By means of a simple computation, from equation (3) it
follows that these two functions have to satisfy the follow-
ing system of ordinary differential equations:

{
ż = −2ε

√
1 − z2 sin θ

θ̇ = 2ε cos θ z√
1−z2 − 2f(t)

We compute, now, the numerical solution of these equa-
tions for, e.g., the initial conditions z(0) = 0.8 and θ(0) =
0 in the two cases:

(a) ε = 0.01, ω1 = 1, ω2 = 2 and η/ω1 = µ0, where we
expect to have dynamical localization;

(b) ε = 0.01, ω1 = 1, ω2 = 2.01 and η/ω1 = µ0, where we
expect to don’t have dynamical localization.

Indeed, in full agreement with the above conclusion, we
see in Figure 1 that the effect of dynamical localization is
very sensitive with respect to the field’s parameters.
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Fig. 2. In this figure we plot the logarithmic graph of the func-
tion r with respect to the ratio ω1/ω2 where we have fixed, for
argument sake, η/ω1 = 2. From this picture a chaotic behavior
appears.

It is important to underline that this situation appears,
at least theoretically, for any couple of values ω1 and ω2,
not only in the case ω2 = 2ω1 (even if in such a case the
numerical evidence is more easy to obtain).

The very basic reason of the phenomenon discussed
above is explained by means of the chaotic dependence
of the function r(ω1, ω2, η) from the field’s frequencies. In
order to be more precise we observe that, for any given
value ω1, ω2 and η of the field’s parameter, we have:

min
χ>0

max
γ∈(1−χ,1+χ)

|r̂ − r(ω1, γω2, η)| = |r̂|.

where r̂ = r(ω1, ω2, η). This property is a direct conse-
quence of the fact that r = 0 if the two frequencies ω1 and
ω2 are incommensurate and from the fact that the Bessel
functions Jn(x) decrease very fast with respect to n.

Hence, for any η and ω1 fixed, it follows that Î is a
discontinuous function on the set

S = Sω1,η = {ω2: r(ω1, ω2, η) �= 0}

and this set S is a dense set on the real axis (see Fig. 2).
Therefore, we can conclude that the influence of a small
change of the field’s frequencies on the dynamical local-
ization effect cannot be reduced beyond a certain limit by
improving the resolution.

In conclusion, in this paper we have explored the dy-
namical localization effect for two-level systems under the
effect of a bichromatic external field. We have proved that
this effect appears only when the limit Î is zero and we
have also proved, in the specific case (7), that Î depends on
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the driving frequencies in a very discontinuous way. As a
result, the theoretical explanation of the chaotic behavior
predicted by Wilkens and Rzazewski [19] is given.

This work is partially supported by the Italian MURST and
INDAM-GNFM. I thank Prof. Joao C.A. Barata and Prof.
Vincenzo Grecchi for helpful discussions and remarks.
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